SARS-CoV-2 Testing

The degree to which people need to enact and comply with physical distancing measures is directly related to the ability to detect and contain the virus. This has led to an enthusiastic movement by the government, healthcare providers and the public to approve and utilize SARS-CoV-2 testing as it becomes available, often before it has met the scientific scrutiny it warrants.

Disease spread
The basic reproduction number, R_0, describes the rate of spread of a disease in a population.

$$R_0 < 1\quad \text{Spread of disease is slowing}$$

$$R_0 > 1\quad \text{Spread of disease is increasing}$$

Current testing methods
There are multiple technologies to test for SARS-CoV-2

- Direct viral testing by molecular techniques
- Nucleic acid amplification via polymerase chain reaction (PCR)
- Isothermal amplification
- Serological testing

As the testing for SARS-CoV-2 is so new to medical testing, it is not yet a perfect diagnostic tool. In addition, different tests have different purposes. The results that are obtained from these tests have varying degrees of accuracy, reliability and relevance.

Testing accuracy
Accuracy is often described by a test's sensitivity and specificity

Highly sensitive tests \rightarrow Detect a higher number of positive results (true positives)
Highly specific tests \rightarrow Rule out results that are not positive (true negatives)

Factors affecting testing reliability and relevance

Accuracy of test \quad Probability of result \quad High prevalence of disease in population

Conclusion
The current accuracy and believed prevalence of SARS-CoV-2 in the U.S. population makes individual screening testing of OMS patients to be of low utility and benefit. There is significant benefit to large-scale testing for epidemiologic and contact tracing purposes.

Review the White Paper on SARS-CoV-2 Testing for more information.